
DNS research proposal - A Smart Approach to Infection Analysis and
Infected ELF Binaries Disinfection

Pietro Mazzini

2021–2022

Abstract

The aim of this research proposal is to study and theorize a machine learning approach to ELF binaries structure
anomaly detection. The neural network proposed should detect crafted or infected executable files and visually
underline anomalies found to help researchers understand viruses behaviors and newly exploited binary crafting
techniques. The second part of the research aim is restoring infected ELF binaries to their initial, harmless, stage.

1 Introduction

1.1 Research area

About a month ago (April 2021) the first edition of the
e-zine TMP.out [19] was published; this e-zine focuses
on ELF binary study and research. Some of the papers
are ”Dead Bytes” by xcellerator [9], containing references
to ”ELF Binary Mangling” by netspooky [4][5][6], ”Im-
plementing the PT NOTE Infection Method in x64 As-
sembly” by sblip [8][2][1] and ”PT NOTE Disinfector” by
manizzle [3].

Summarizing, these papers are about elaborate and
artistic methods to embed in ELF binaries malicious code
that gets eventually executed, substantially what a para-
site virus does, and advanced crafting techniques to cre-
ate malformed executable files.

1.2 General idea

In this research proposal is presented a machine learn-
ing model able to, given in input an ELF binary file and
nothing more:

1. Detect if the ELF has been infected by a virus (or
if it is malformed)

2. If the ELF is infected determine which portions
and bytes have been modified, providing a rich and
handy structure overview

3. Restore the ELF file content and behavior to the
original state

1.3 Background

ELF binary structure The ELF binary format (Ex-
ecutable and Linkable Format) is a standard, cross plat-
form, file format for executable files, object code, shared
libraries, and core dumps. The ELF starts with the ELF
header (Figure 1), this holds a road map describing the
file’s organization.

Figure 1: Example ELF header of ls ELF binary.

The ELF header contains references to the program
header table (Figure 2) and the section header table (Fig-
ure 3). The program header table holds the offsets of the
various segments of which the ELF is composed; there are
different types of segments, the main function of these is
containing loadable code that will be used to build the
process memory image (Figure 4). The section header ta-
ble is instead used to list sections, these hold information
about linking and relocation.

Figure 2: Example Program header of ls ELF binary.

1



Figure 3: Example Section header (truncated) of ls ELF bi-
nary.

Figure 4: Example process image [12].

An high level point of view of how an ELF binary
is structured is reported in Figure 5; this image points
to the fact that sections and segments often overlap, so
it can be said that segments represent the binary at a
structural, coarse-grained level, while sections are more
fine-grained and focus on the semantic of the contained
bytes. Sections not associated with a segment typically
contain such thing as debugging information, symbol ta-
bles etc.

Figure 5: ELF general structure [13].

Malformed ELF binary A malformed ELF binary
[7][4][5][6] is a file that contains unexpected values in its
header; these ELF files do not run on all Linux distribu-
tions and they could also break across different versions
of the same distribution. A high number of software that
work with ELF binaries like debuggers (GNU Debugger,
also known as gdb) and analysis tools (readelf, tool
that displays information about ELF format object files),
can’t handle this type of files and break during execution.
An example of how readelf behaves given a malformed
ELF is shown in Figure 6.

Figure 6: How readelf parses bye.asm [7], a malformed (yet
executable) ELF file.

Malformed ELF binaries are usually used to contain
viral code and are well known for their tiny dimensions;
they can appear tough to understand and analyze as they
usually break code debuggers.

Parasite viruses To insert parasite code means that
the process image must load it so that the original code
and data is still intact.

There are plenty of infection techniques that could
be employed to achieve this; in general the aim is to ma-
nipulate the text section and the program header of the
infected binary. The pivotal techniques used by parasitic
viruses are briefly explained in the next bullet point list
[15].

2



• .note Section Overwriting: the .note section
is a standard section of the ELF format. It is pri-
marily used by compilers and other tools to give
information about the object. The goal is to over-
write an existing .note section as it is not essential
for the file with a loadable and executable section
[8].

• Section Adding: in order to have an unlimited
payload size available, a new section can be cre-
ated and executed.

• Segment Padding: segment addresses are sub-
ject to padding (Figure 4); the viral code can so be
injected in padding areas.

• Section Padding: same as segment padding but
applied to sections.

• Code Cave: a code cave is an area of bytes in the
.data segment of a binary that contains a null byte
pattern (x00) greater than two bytes; those code
caves can be chained to contain a split payload.

The common point between these categories is that
the binary entry point, the address at which executable
code is placed, is always modified to point to the new
injected code.

2 Proposed Work

Infection detection This part of the process could
be achieved instructing a machine learning autoencoder
model [11]. The aim of an autoencoder is to learn a rep-
resentation (encoding) for a set of data, typically for di-
mensionality reduction, by training the network to ignore
signal ”noise” (Figure 7). Along with the reduction side,
a reconstructing side is learned, where the autoencoder
tries to generate from the reduced encoding a represen-
tation as close as possible to its original input. Feeding a
large data set of unharmed ELF binaries to the autoen-
coder this will generate a neural layer containing sort of
a summary of the input data, this is then used in the
working phase to detect anomalies in the analyzed bina-
ries.

Figure 7: Autoencoder model workflow [10].

Using entire binaries for the training phase could lead
to a noisy model, as ELF binaries can vary much be-
tween each other; thus, the data set must be modified
in order to distinguish a patched binary form a legiti-
mate one. The proposed solution is to only consider the

ELF header, the program header, and the section header
for each analyzed ELF binary instead of the whole bi-
nary; these portions are the ones that are most likely
modified by parasitic viruses (other than the code sec-
tion added/modified). This can be proved comparing
the infected and legitimate version of a simple ELF file:
in Figures 8 and 9 the Midrashim [1][2] virus has been
used; this implements the PT NOTE to PT LOAD infec-
tion [8] which is part of the .note Section Overwriting
category.

Figure 8: Example of diff between a simple Hello World
ELF binary (legitimate vs infected by Midrashim virus [1][2])
using the hex dumper xxd.

Figure 9: Example of diff between a simple Hello World
ELF binary (legitimate vs infected by Midrashim virus [1][2])
using readelf.

Infected portions highlighting Merging the just
trained machine learning model with two well known
GNU utilities, readelf and the hex dumper xxd, will
lead to the development of a wrapper software that is
able to identify patched portions of binaries and high-
light them to malware analysts. How this software is
supposed to work is synthesized in Figures 10 and 11.

Figure 10: How the model should wrap xxd to highlight the
suspected infection bytes.

3



Figure 11: How the model should wrap readelf to highlight
the suspected infection bytes.

ELF binary restoration The last step consists of
restoring the ELF file to its unharmed state parsing and
analyzing the highlighted infected portions. To accom-
plish this, three options could be adopted. The first
idea is to try to achieve data recovery through machine
learning, this will require the training of a new model;
”Development of machine learning solutions and their
applications on data recovery related problems requires
collection of statistical data from raw data samples as
well as from previously sorted/resolved cases.” [16] As
the just cited paper points to, this method will require a
lot of work for constructing a large data set containing
already restored binaries. The second idea is based on
machine learning as well, but provides a slightly different
result; a new model could be trained to categorize infec-
tion types and suggest action to restore infected binaries.
This solution isn’t comparable to the former one because
it’s just a sheer categorization model, but together with
the detection model it could be useful to security an-
alysts. The last method adoptable involves developing
traditional software to restore binaries; this is possible
as it has already been achieved for some type of infec-
tions [3] but the feasibility for all types of infections is
not foregone.

One could also think about mixing the just explained
approaches; this should be definitely the best idea but
also the most time-consuming and complex one. Merg-
ing different paradigms can be very challenging but is
seems a widely used procedure nowadays.

Building the dataset To obtain a large amount of be-
nign ELF binaries to build the dataset the easiest way is
collecting files found in /bin-like folders in Linux based
systems. Using binaries of most famous Linux distribu-
tions will grant a great variety with very little effort. To
achieve this Docker could be used: the idea is pulling
official images of famous software and operative systems
and extracting from the generated Docker container their
binaries. To further enrich the dataset, as the ELF file
format is cross-platform and cross-architecture, adopting
binaries of different architectures can be considered.

About the pre-processing phase the plan is, for
each binary, extracting the ELF, program and sec-
tion headers as readelf plain text output (readelf -e

<binary-file>), and also the hex dump of these using
xxd or python. This will be useful for tying together the
Infection detection and the Infected portions highlighting
phases.

The proposed dataset building method doesn’t apply
to the ELF binary restoration phase as in this case the
dataset would be a lot more complex; this is one of the
reasons why the adoption of machine learning isn’t really
suitable for this part of the project.

3 Final thoughts

Related works Linux viruses world is incredibly vast
but, except from the famous classification and analysis
study done in [12], academic research on this matter still
has to move forward. The proposed work could spur re-
searchers to deepen this subject and to study new meth-
ods to counteract viral infections in the Linux ecosystem.

Said that, analogies could be found in [17] with the
Windows’ PE (Portable Executable) format features. In
this paper are analyzed machine learning techniques to
perform malware detection; one of these methods consists
of helping the model to spot potential threats instruct-
ing it on how a PE is structured, more or less what is
explained in this proposal but studying a different type
of executable file. In the above cited paper are col-
lected other interesting methods for malware detection
but their usage in the proposed case wouldn’t be so use-
ful. This mainly because the focus of the research project
isn’t spotting malicious code but the general detection
of patched binaries. Whether the patched binary has
been injected with a simple printf("Hello World!")

or with malicious code, the trained model will attempt
to detect and restore this patch regardless. In the pro-
posal the infection detection is stressed more than the
general patching of an ELF simply for practical and real
world reasons. So, adopting techniques cited in [17] like
String features (analysis of strings collocated in the ex-
ecutable file), Function based features (extract functions
and use them to produce various attributes representing
the file), in general Dynamic analysis etc. wouldn’t be a
profitable choice as these techniques would be useless in
this research context.

Impact Comparing the proposed work paradigm with
the current state of the art of malware detection
([14][17][18]) some considerations arises: the depicted ap-
proach aims are really different from what the traditional
malware detection focuses on. It’s hard to talk about pros
and cons, they’re more likely conceptual differences. In
malware detection, as the name points to, the end is per-
ceiving if a file contains viral code, while in this research
the point is simply detecting and restoring corrupted bi-
naries. The concept of reparation in malware detection
doesn’t exist; that’s the strong feature of this research.

The restoration model proposed could certainly be
useful in industrial fields where a viral attack took place
to restore the infected binaries without the need of recom-
piling, rebuilding or reinstalling software. Nevertheless,
this can be an edge case, but in some environments this
work could be very effective and useful; for instance let’s
think about Internet of Things devices: having a way to
detect viral infections and restoring the device to a un-
harmed state without the need of a full reset could save
a lot of time and work.

Integrating this new concept to modern malware de-

4



tection approaches could further enrich the work pro-
vided by those services.

Expected results The final result of this work will be
a complex tool-set for ELF binaries analysis and restora-
tion; machine learning models can be theoretically use-
ful in the detection and highlighting phase, while in
the restoration phase this approach could be cumber-
some. The best scenario will probably be implement-
ing restoration as a modular software that could be ex-
panded adding rules (for example as yaml files) for each
disinfection technique. This path is still very valuable
even without the adoption of a neural network because
an ELF restoration engine doesn’t exist yet.

However, the alternative of trying to adopt a machine
learning approach in the restoration phase shouldn’t be
discarded as it could lead to interesting and unexplored
paths.

5



References

[1] guitmz. Linux.Midrashim: Assembly x64 ELF virus. Jan. 2021. url: https : / / www . guitmz . com / linux -

midrashim-elf-virus/.

[2] guitmz. TMP.out - Linux.Midrashim.asm. Apr. 2021. url: https://tmpout.sh/1/Linux.Midrashim.asm.

[3] manizzle. TMP.out - PT NOTE Disinfector. Apr. 2021. url: https://tmpout.sh/1/4.html.

[4] netspooky. Elf Binary Mangling - Part 1. Aug. 2018. url: https://n0.lol/ebm/1.html.

[5] netspooky. Elf Binary Mangling - Part 2. Dec. 2018. url: https://n0.lol/ebm/2.html.

[6] netspooky. Elf Binary Mangling - Part 3. Dec. 2018. url: https://n0.lol/ebm/3.html.

[7] netspooky. GitHub - bye.asm. url: https://gist.github.com/netspooky/dd750e7ced85fb1861780a90be71053d.

[8] sblip. TMP.out - Implementing the PT NOTE Infection Method in x64 Assembly. Apr. 2021. url: https:

//tmpout.sh/1/2.html.

[9] xcellerator. TMP.out - Dead Bytes. Apr. 2021. url: https://tmpout.sh/1/1.html.

[10] Anomaly Detection with Autoencoders Made Easy - Image. url: https://towardsdatascience.com/anomaly-
detection-with-autoencoder-b4cdce4866a6.

[11] Pierre Baldi. “Autoencoders, Unsupervised Learning and Deep Architectures”. In: Proceedings of the 2011 In-
ternational Conference on Unsupervised and Transfer Learning Workshop - Volume 27. UTLW’11. Washington,
USA: JMLR.org, 2011, pp. 37–50.

[12] Silvio Cesare. UNIX VIRUSES. 1998. url: https://ivanlef0u.fr/repo/madchat/vxdevl/vdat/tuunix01.
htm.

[13] ELF, Wikipedia - Image. url: https://en.wikipedia.org/wiki/Executable_and_Linkable_Format.

[14] Dragoş Gavriluţ et al. “Malware detection using machine learning”. In: 2009 International Multiconference on
Computer Science and Information Technology. 2009, pp. 735–741. doi: 10.1109/IMCSIT.2009.5352759.

[15] Pierre Graux, Aymeric Mouillard, and Mounir Saoud. “Backdooring ELF Using Unused Code”. In: (2016).

[16] David Edwards Igor Sestanj. “Advanced Data Recovery Techniques: Using machine learning in Data Recovery”.
In: (2019).

[17] Asaf Shabtai et al. “Detection of malicious code by applying machine learning classifiers on static features:
A state-of-the-art survey”. In: Information Security Technical Report 14.1 (2009). Malware, pp. 16–29. issn:
1363-4127. doi: https://doi.org/10.1016/j.istr.2009.03.003. url: https://www.sciencedirect.com/
science/article/pii/S1363412709000041.

[18] Alireza Souri and Rahil Hosseini. “A State-of-the-Art Survey of Malware Detection Approaches Using Data
Mining Techniques”. In: Hum.-Centric Comput. Inf. Sci. 8.1 (Dec. 2018). issn: 2192-1962. doi: 10.1186/s13673-
018-0125-x. url: https://doi.org/10.1186/s13673-018-0125-x.

[19] TMP.out e-zine. url: https://tmpout.sh/1/.

6

https://www.guitmz.com/linux-midrashim-elf-virus/
https://www.guitmz.com/linux-midrashim-elf-virus/
https://tmpout.sh/1/Linux.Midrashim.asm
https://tmpout.sh/1/4.html
https://n0.lol/ebm/1.html
https://n0.lol/ebm/2.html
https://n0.lol/ebm/3.html
https://gist.github.com/netspooky/dd750e7ced85fb1861780a90be71053d
https://tmpout.sh/1/2.html
https://tmpout.sh/1/2.html
https://tmpout.sh/1/1.html
https://towardsdatascience.com/anomaly-detection-with-autoencoder-b4cdce4866a6
https://towardsdatascience.com/anomaly-detection-with-autoencoder-b4cdce4866a6
https://ivanlef0u.fr/repo/madchat/vxdevl/vdat/tuunix01.htm
https://ivanlef0u.fr/repo/madchat/vxdevl/vdat/tuunix01.htm
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://doi.org/10.1109/IMCSIT.2009.5352759
https://doi.org/https://doi.org/10.1016/j.istr.2009.03.003
https://www.sciencedirect.com/science/article/pii/S1363412709000041
https://www.sciencedirect.com/science/article/pii/S1363412709000041
https://doi.org/10.1186/s13673-018-0125-x
https://doi.org/10.1186/s13673-018-0125-x
https://doi.org/10.1186/s13673-018-0125-x
https://tmpout.sh/1/

	Introduction
	Research area
	General idea
	Background

	Proposed Work
	Final thoughts

